

DPP – 3 (Magnetic Field & Force)			
Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/97		
Video Solution on YouTube:-	https://youtu.be/AlqRysIjOXs		
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/51		

Q 1. Two particles A and B of same mass and having charges of same magnitude but of opposite nature are thrown in a region of magnetic field (as shown) with speeds v_1 and v_2 ($v_1 > v_2$). At the time particle A escapes out of the magnetic field, angular momentum of particle B w.r.t. particle A is proportional to (Assume both the particles escape in the region from where they respectively entered the field)

Q 2. Trajectories of three particles A . B and C projected perpendicular to a uniform transverse magnetic field in three different cases are shown in figure. A, B and C can

Q 3. A particle of mass m and charge q enters a region of magnetic field (as shown) with speed v. There is a region in which the magnetic field is absent, as shown. The particle after entering the region collides elastically with a rigid wall. Time after which the velocity of particle becomes antiparallel to its initial velocity is

Q 4. A uniform magnetic field $\vec{B} = B_0 \hat{j}$ exists in space. A particle of mass m and charge q is projected towards negative x-axis with speed v from a point (d 0, 0). The maximum value of v for which the particle does not hit the y-z plane is:

(a)
$$\frac{2bq}{dm}$$
 (b) $\frac{bqu}{m}$ (c) $\frac{bq}{2dm}$ (d) $\frac{bq}{2m}$

Q 5. Two identical particles having the same mass m and charges +q and -q separated by a distance d enter in uniform magnetic field B directed perpendicular to paper inwards with speeds v₁ and v₂ as shown in figure. The particles will not collide if: (Ignore electrostatic force)

(a)
$$d > \frac{m}{Bq}(v_1 + v_2)$$

(c) $d < \frac{2m}{Bq}(v_1 + v_2)$
(c) $d < \frac{2m}{Bq}(v_1 + v_2)$
(d) $v_1 = v_2$

Q 6. A charged particle having charge q experience a force $\vec{F}_1 = q(-\hat{j} + \hat{k})$ N in a magnetic field \vec{B} when it has a velocity $\vec{v}_1 = 1\hat{i}$ m/s. The force becomes $\vec{F}_1 = q(\hat{i} - \hat{k})$ N when the velocity is changed to $\vec{v}_2 = 1\hat{j}$ m/s. The magnetic induction vector at that point is: (a) $(\hat{i} + \hat{j} + \hat{k})T$ (b) $(\hat{i} - \hat{j} - \hat{k})T$

(a)
$$(\hat{\imath} + \hat{\jmath} + k)T$$

(b) $(\hat{\imath} - \hat{\jmath} - k)T$
(c) $(-\hat{\imath} - \hat{\jmath} + \hat{k})T$
(d) $(\hat{\imath} + \hat{\jmath} - \hat{k})T$

- Q 7. A charged particle is projected with velocity v_0 along positive x-axis. The magnetic field B is directed along negative z-axis between x = 0 and x = L. The particle emerges out (at x = L) at an angle of 60° with the direction of projection. Find the velocity with which the same particle is projected (at x = 0) along positive x-axis so that when it emerges out (at x = L), the angle made by it is 30° with the direction of projection: (a) 2 v_0 (b) $v_0/2$ (c) $v_0/\sqrt{3}$ (d) $v_0\sqrt{3}$
- Q 8. A block of mass m & charge q is released on a long smooth inclined plane. Magnetic field B is constant, uniform, horizontal and parallel to surface as shown. Find the time from start when block loses contact with the surface –

- Q 9. Two particles of charges +Q and -Q are projected from the same point with a velocity v in a region of uniform magnetic field B such that the velocity vector makes an angle θ with the magnetic field. Their masses are M and 2M, respectively. Then, they will meet again for the first time at a point whose distance from the point of projection is-(a) $2\pi Mv \cos \theta/QB$ (b) $8\pi Mv \cos \theta/QB$ (c) $\pi Mv \cos \theta/QB$ (d) $4\pi Mv \cos \theta/QB$
- Q 10. A direct current flowing through the winding of a long cylindrical solenoid of radius

R produces in it a uniform magnetic field of induction *B*. An electron flies into the solenoid along the radius between its turns (at right angles to the solenoid axis) at a velocity \vec{v} (Figure). After a certain time, the electron deflected by the magnetic field leaves the solenoid. Determine the time *t* during which the electron moves in the solenoid.

Q 11. In a region of space, a uniform magnetic field B exists in the y-direction. A proton is fired from the origin, with its initial velocity v making a small angle α with the y-direction in the y-z plane. In the subsequent motion of the proton –

- (a) its x-coordinate can never be positive
- (b) its x-and z-coordinates cannot both be zero at the same time
- (c) its z-coordinate can never be negative
- (d) its y-coordinate will be proportional to the square of its time of flight
- Q 12. A charged particle is moving with constant speed in a horizontal x-y plane in a straight line as shown. Suddenly a uniform magnetic field is switched on parallel to

X-axis, when particle is at origin. What must be the value of θ so that particle passes through point P (L, 0, -H) in the minimum possible time ?

Q 13. A charged particle of specific charge (charge/mass) α is released from origin at time t =0 with velocity $\vec{v} = v_0(\hat{i} + \hat{j})$ in uniform magnetic field $\vec{B} = -B_0\hat{i}$. Co-ordinates of the particle at time t = $\frac{\pi}{B_0\alpha}$ are :

(b) $\left(\frac{-v_0}{2B_a\alpha}, 0, 0\right)$ (d) $\left(\frac{v_0\pi}{B_0\alpha}, 0, \frac{-2v_0}{B_0\alpha}\right)$

(a)
$$\left(\frac{v_0}{2B_0\alpha}, \frac{\sqrt{2}v_0}{\alpha B_0}, \frac{-v_0}{B_0\alpha}\right)$$

(c) $\left(0, \frac{2v_0}{B_0\alpha}, \frac{v_0\pi}{2B_0\alpha}\right)$

Q 14. Two very long straight parallel wires carry steady currents i and 2i in opposite directions. The distance between the wires is d. At a certain instant of time a point charge q is at a point equidistant from the two wires in the plane of the wires. Its instantaneous velocity \vec{v} is perpendicular to this plane. The magnitude of the force due to the magnetic field acting on the charge at this instant is:

Answer Key

Q.1 c	Q.2 a	Q.3 a	Q.4 b	Q.5 c
Q.6 a	Q.7 d	Q.8 c	Q.9 d	Q.10 b
Q.11 a	Q.12 a	Q.13 d	Q.14 d	