

Video Solution on Website:-

Video Solution on YouTube:-
https://physicsaholics.com/home/courseDetails/97
https://youtu.be/AlqRysljOXs

Written Solution on Website:-

Q 1. Two particles A and B of same mass and having charges of same magnitude but of opposite nature are thrown in a region of magnetic field (as shown) with speeds V_{1} and $v_{2}\left(v_{1}>v_{2}\right)$. At the time particle A escapes out of the magnetic field, angular momentum of particle B w.r.t. particle A is proportional to (Assume both the particles escape in the region from where they respectively entered the field) \qquad

https://physicsaholics.com/note/notesDetalis/51

(a) $v_{1}+v_{2}$
(b) $v_{1}-v_{2}$
(c) $v_{1}^{2}-v_{2}^{2}$
(d) $v_{1}^{2}+v_{2}^{2}$

Q 2. Trajectories of three particles A,B and C projected perpendicular to a uniform transyerse magnetic field in three different cases are shown in figure. A, B and C can be

(a) ${ }_{1}^{1} \mathrm{H},{ }_{2}^{4} \mathrm{He},{ }_{1}^{2} \mathrm{H}$
(b) ${ }_{1}^{1} \mathrm{H},{ }_{1}^{2} \mathrm{H},{ }_{2}^{4} \mathrm{He}$
(c) ${ }_{1}^{2} \mathrm{H},{ }_{2}^{4} \mathrm{He},{ }_{1}^{1} \mathrm{H}$
(d) ${ }_{2}^{4} \mathrm{He},{ }_{1}^{1} \mathrm{H},{ }_{1}^{2} \mathrm{H}$

Q 3. A particle of mass m and charge q enters a region of magnetic field (as shown) with speed v . There is a region in which the magnetic field is absent, as shown. The particle after entering the region collides elastically with a rigid wall. Time after which the velocity of particle becomes antiparallel to its initial velocity is

(a) $\frac{m}{2 q B}(\pi+4)$
(b) $\frac{m}{q B}(\pi+2)$
(c) $\frac{m}{4 q B}(\pi+2)$
(d) $\frac{m}{4 q B}(2 \pi+3)$

Q 4. A uniform magnetic field $\vec{B}=\mathrm{B}_{0} \hat{\jmath}$ exists in space. A particle of mass m and charge q is projected towards negative x -axis with speed v from a point $(\mathrm{d} 0,0)$. The maximum value of v for which the particle does not hit the $y-z$ plane is:
(a) $\frac{2 B q}{d m}$
(b) $\frac{B q d}{m}$
(c) $\frac{B q}{2 d m}$
(d) $\frac{B q d}{2 m}$

Q 5. Two identical particles having the same mass m and charges $+q$ and $-q$ separated by a distance d enter in uniform magnetic field B directed perpendicular to paper inwards with speeds v_{1} and v_{2} as shown in figure. The particles will not collide if: (Ignore electrostatic force)

(a) $d>\frac{m}{B q}\left(v_{1}+v_{2}\right)$
(b) $d<\frac{m}{B q}\left(v_{1}+v_{2}\right)$
(c) $d<\frac{2 m}{B q}\left(v_{1}+v_{2}\right)$
(d) $\mathrm{v}_{1}=\mathrm{v}_{2}$

Q 6. A charged particle having charge q experience a force $\vec{F}_{1}=q(-\hat{\jmath}+\hat{k}) \mathrm{N}$ in a magnetic field \vec{B} when it has a velocity $\vec{v}_{1}=1 \hat{\imath} \mathrm{~m} / \mathrm{s}$. The force becomes $\vec{F}_{1}=q(\hat{\imath}-$ $\hat{k}) \mathrm{N}$ when the velocity is changed to $\vec{v}_{2}=1 \hat{\jmath} \mathrm{~m} / \mathrm{s}$. The magnetic induction vector at that point is
(a) $(\hat{\imath}+\hat{\jmath}+\hat{k}) T$
(b) $(\hat{\imath}-\hat{\jmath}-\hat{k}) T$
(c) $(-\hat{\imath}-\hat{\jmath}+\hat{k}) T$
(d) $(\hat{\imath}+\hat{\jmath}-\hat{k}) T$

Q 7. A charged particle is projected with velocity v_{0} along positive x -axis. The magnetic field B is directed along negative z -axis between $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$. The particle emerges out (at $\mathrm{x}=\mathrm{L}$) at an angle of 60° with the direction of projection. Find the velocity with which the same particle is projected (at $\mathrm{x}=0$) along positive x -axis so that when it emerges out (at $\mathrm{x}=\mathrm{L}$), the angle made by it is 30° with the direction of projection:
(a) $2 \mathrm{v}_{0}$
(b) $\mathrm{V}_{0} / 2$
(c) $\mathrm{v}_{0} / \sqrt{3}$
(d) $\mathrm{v}_{0} \sqrt{3}$

Q 8. A block of mass m \& charge q is released on a long smooth inclined plane. Magnetic field B is constant, uniform, horizontal and parallel to surface as shown. Find the time from start when block loses contact with the surface -

(a) $\frac{m \cos \theta}{q B}$
(b) $\frac{m \operatorname{cosec} \theta}{q B}$
(c) $\frac{m \cot \theta}{q B}$
(d) none of these

Q 9. Two particles of charges $+Q$ and $-Q$ are projected from the same point with a velocity v in a region of uniform magnetic field B such that the velocity vector makes an angle θ with the magnetic field. Their masses are M and 2 M , respectively. Then, they will meet again for the first time at a point whose distance from the point of projection is-
(a) $2 \pi \mathrm{Mv} \cos \theta / \mathrm{QB}$
(b) $8 \pi \mathrm{Mv} \cos \theta / \mathrm{QB}$
(c) $\pi \mathrm{Mv} \cos \theta / \mathrm{QB}$
(d) $4 \pi \mathrm{Mv} \cos \theta / \mathrm{QB}$

Q 10. A direct current flowing through the winding of a long cylindrical solenoid of radius R produces in it a uniform magnetic field of induction \vec{B}. An electron flies into the solenoid along the radius between its turns (at right angles to the solenoid axis) at a velocity \vec{v} (Figure). After a certain time, the electron deflected by the magnetic field leaves the solenoid. Determine the time t during which the electron moves in the solenoid.

(a) $\frac{m}{e B} \tan ^{-1} \frac{e B R}{m v}$
(b) $\frac{2 m}{e B} \tan ^{-1} \frac{e B R}{m v}$
(c) $\frac{m}{e B} \tan ^{-1} \frac{m v}{e B R}$
(d) $\frac{2 m}{e B} \tan ^{-1} \frac{m v}{e B R}$

Q 11. In a region of space, a uniform magnetic field B exists in the y-direction. A proton is fired from the origin, with its initial velocity v making a small angle α with the y direction in the $y-z$ plane. In the subsequent motion of the proton -

(a) its x-coordinate can never be positive
(b) its x -and z -coordinates cannot both be zero at the same time
(c) its z -coordinate can never be negative
(d) its y-coordinate will be proportional to the square of its time of flight

Q 12. A charged particle is moving with constant speed in a horizontal $x-y$ plane in a straight line as shown. Suddenly a uniform magnetic field is switched on parallel to

X -axis, when particle is at origin. What must be the value of θ so that particle passes through point $\mathrm{P}(\mathrm{L}, 0,-\mathrm{H})$ in the minimum possible time?

(a) $\theta=\tan ^{-1}\left(\frac{\pi H}{2 L}\right)$
(b) $\theta=\tan ^{-1}\left(\frac{\pi H}{4 L}\right)$
(c) $\theta=\tan ^{-1}\left(\frac{\pi H}{3 L}\right)$
(d) $\theta=\tan ^{-1}\left(\frac{2 \pi H}{3 L}\right)$

Q 13. A charged particle of specific charge (charge/mass) α is released from origin at time t $=0$ with velocity $\vec{v}=v_{0}(\hat{\imath}+\hat{\jmath})$ in uniform magnetic field $\vec{B}=-B_{0} \hat{l}$. Co-ordinates of the particle at time $\mathrm{t}=\frac{\pi}{B_{0} \alpha}$ are :
(a) $\left(\frac{v_{0}}{2 B_{0} \alpha}, \frac{\sqrt{2} v_{0}}{\alpha B_{0}}, \frac{-v_{0}}{B_{0} \alpha}\right)$
(b) $\left(\frac{-v_{0}}{2 B_{a} \alpha}, 0,0\right)$
(c) $\left(0, \frac{2 v_{0}}{B_{0} \alpha}, \frac{v_{0} \pi}{2 B_{0} \alpha}\right)$
(d) $\left(\frac{v_{0} \pi}{B_{0} \alpha}, 0, \frac{-2 v_{0}}{B_{\theta} \alpha}\right)$

Q 14. Two very long straight parallel wires carry steady currents i and $2 i$ in opposite directions. The distance between the wires is d . At a certain instant of time a point charge q is at a point equidistant from the two wires in the plane of the wires. Its instantaneous velocity \vec{v} is perpendicular to this plane. The magnitude of the force due to the magnetic field acting on the charge at this instant is:
(a) $\frac{\mu_{0} i q d}{2 \pi d}$
(b) $\frac{\mu_{0} i q v}{\pi d}$
(c) $\frac{3 \mu_{0} i q v}{2 \pi d}$
(d) zero

Answer Key

